
Institut für Computergraphik und
Algorithmen

Technische Universität Wien
Karlsplatz 13/186/2

A-1040 Wien
AUSTRIA

Tel: +43 (1) 58801-18601
Fax: +43 (1) 58801-18698

Institute of Computer Graphics and
Algorithms

Vienna University of Technology
email:

technical-report@cg.tuwien.ac.at

other services:
http://www.cg.tuwien.ac.at/
ftp://ftp.cg.tuwien.ac.at/

TECHNICAL REPORT

Feature Peeling

Muhammad Muddassir Malik
Institute of Computer Graphics and Algorithms

Vienna University of Technology

mmm@cg.tuwien.ac.at

Torsten Möller
Graphics, Usability, and

Visualization (GrUVi) Lab

Computing Science Department

Simon Fraser University

torsten@cs.sfu.ca

M. Eduard Gröller
Institute of Computer Graphics and Algorithms

Vienna University of Technology

groeller@cg.tuwien.ac.at

TR-186-2-07-03
February 2007

Keywords: feature peeling, volume visualization, transfer function, ray analysis





Feature Peeling

Muhammad Muddassir Malik
Institute of Computer Graphics and Algorithms

Vienna University of Technology

mmm@cg.tuwien.ac.at

Torsten Möller
Graphics, Usability, and

Visualization (GrUVi) Lab

Computing Science Department

Simon Fraser University

torsten@cs.sfu.ca

M. Eduard Gröller
Institute of Computer Graphics and Algorithms

Vienna University of Technology

groeller@cg.tuwien.ac.at

Abstract

We present a novel rendering algorithm that analyses the
ray profile along the line of sight during rendering and
cuts it into layers, according to the peaks and valleys
found, which we call transition points. The sensitivity of
these transition points is calibrated via two thresholds.
The slope threshold influences the magnitude of a peak
following a valley, while the peeling threshold measures
the depth of the transition point relative to the neigh-
boring rays. This technique separates the dataset into a
number of feature layers. The user can scroll through
the layers inspecting various features from the current
view position. While our technique has been inspired
by opacity peeling approach [14], we demonstrate that
we can reveal detectable features even in the third and
forth layers for both, CT and MRI datasets.

CR Categories: 1.3.7 [Computer Graphics]: Three di-
mensional graphics and realism—Life Cycle

Keywords: feature peeling, volume visualization,
transfer function, ray analysis

1 Introduction

Transfer functions are used in 3D visualization to assign
user defined optical properties to a volumetric dataset
based on scalar values. This specification of the optical
properties should be able to highlight maligned tissue
or features that are of interest for a particular medical
study. This is a non-trivial task and often requires con-
siderable time and expertise to achieve desired results.
While one might be able to set up a system which is then
reused for several patients, this is not always possible.
Especially, Magnetic Resonance Imaging (MRI)
datasets are more difficult then and different from
Computed Tomography (CT) datasets. Hounsfield
numbers give a good indication of the tissue type in
CT, independent of the patient. In contrast, the variance

of tissue response between different patients in MRI
dataset is too large to use pre-defined transfer functions
for the detection of features. Transfer function spec-
ification has to be performed every time a new MRI
dataset is generated. This fact makes transfer function
specification a very difficult and time-consuming task.

Additionally, MRI typically contains a considerable
amount of noise that makes it harder and more challeng-
ing to produce insightful visualizations. There is high
frequency noise that affects the clarity of the images and
there is low frequency noise that slowly changes the in-
tensity of a signal. 3D visualization techniques are rare
for MRI datasets and often medical personnel still uses
manual exploration of the datasets through slice-based
inspection.

We propose a novel rendering technique that identifies
interesting features along viewing rays based on a ray
profile analysis. The algorithm allows the user to browse
through the layered features of the dataset for each par-
ticular view point (see section 3). This technique can
be used without specifying any transfer function and
henceforth is suitable for medical applications. Fur-
ther, we include a de-noising step (as explained in sec-
tion 3.1) to be able to deal with MRI datasets. We suc-
cessfully apply this technique to a variety of medical and
synthetic datasets (section 5).

This work has been inspired by the work of Rezk-
Salama and Kolb [14] and we detail our differences as
well as the relationship to other work in the next sec-
tion.

2 Related Work

In volume rendering, transfer function specification is
the main tool for the user to define optical properties.
The transfer function guides the user to detect features
in a volumetric dataset. The 1D transfer function is the
simplest example which maps scalar values to opacity

1



2 3 FEATURE PEELING

and color. More effective, but complex transfer func-
tions that require user training and experience have been
proposed.
A number of interesting enhancements meant to give
the user insight into the data have been proposed to
the 1D transfer function. From simple histograms [3]
to the contour spectrum [1] to Laplacian-weighted
histograms [12] have been suggested. Potts and
Möller [13] investigate the usage of a logarithmic scale
that eases transfer function specification.
Multi-dimensional transfer functions [6] have been in-
troduced which assign optical properties based on data
values but also first and second derivative information
thereof. Kindlmann and Durkin [5] atomize the gener-
ation of a transfer function. They use the relationship
between scalar values and their first and second order
derivative to highlight boundaries in the dataset.
Kniss et al. [7] describe how probing and clipping can
enhance the understanding of the features that exist in
a dataset. Bergner et al. [2] use a spectral representa-
tion of colors instead of the RGB model to enhance de-
tails and allow effective exploration of datasets. Trans-
fer function specification is also tailored specifically to
the visualization of medical datasets by making use of
metadata [8]. A detailed description of volume graphics
techniques and there applicability to medical visualiza-
tion is given by Hadwiger et al. [4].
While all of these techniques require user intervention,
one can argue, that it would be preferable to cut this
step from the visualization process in order to provide
quick insight into the dataset. This was the basic idea
of the opacity peeling approach of Rezk-Salama and
Kolb [14]. It allows a layered browsing of the dataset
instead. The layers are defined through accumulated
opacity and basically all information in the dataset is
visible. As the layers are based purely on visibility (as
opposed to features), objects of interest might be split
and distributed among several layers. Instead of peeling
different layers of opacity, we propose to do a careful
analysis of ray profiles and split the ray not along opac-
ity thresholds, but rather at possible feature transition
regions.

3 Feature Peeling

Along a ray in a dataset, we find valleys, peaks and ho-
mogeneous regions. Areas of interest are, by default, the
regions where the data field is changing. If there are de-
tectable transitions from one tissue to another, then these
transitions will be present in the areas where the data
field is changing. These transitions can be very useful

and the transition points are the places where interest-
ing features inside the dataset start or end. Whether we
wish to look at objects occluded by others or want to
search for any disorder inside a single organ, such tran-
sitions will help us explore and locate information fast
and easily.
A ray cast through a medical dataset produces a ray pro-
file based on the scalar values encountered. This ray
profile is used by various techniques in a specific way
to generate images. For example, Direct Volume Ren-
dering performs front to back or back to front composit-
ing on the ray profile. Considering a linear ramp as a
transfer function, peaks in the ray will contribute most
to the volume rendering integral. Averaging on the other
hand calculates an average of all the scalar values en-
countered by a ray, as is common in X-Ray rendering or
Fourier volume rendering [10].
Maximum Intensity Projection (MIP) only displays the
highest peak in a ray profile [9] [11] [15]. Similarly, Lo-
cal Maximum Intensity Projection (LMIP) [16] searches
for a peak above a specified threshold along the ray. The
first peak with a value above the threshold is displayed
and the process is terminated.
Consider figure 1, which shows a ray profile with three
features. These features are prominent density peaks in
the ray profile as compared to the rest of the profile. Fea-
ture peeling is separating these features into different
layers by locating transition points between them.

Figure 1: A ray profile showing three features as promi-
nent density peaks. Features are marked with ovals
and vertical lines show the transition points. Transition
points split a ray profile into different layers.

We present a high level explanation of feature peeling
in figure 2 by a 2D illustration. We use three concentric
circular layers in figure 2(a) as a dataset. A ray is also
shown, which passes through the centre of the dataset.
The ray profile and the transition points corresponding
to the ray in figure 2(a) are shown in figure 2(b). On
the right we show the first three resultant layers from



3.2 Relevance Across Neighboring Rays 3

the current view point. The example in figure 2 estab-
lishes the importance of finding transition points that are
representative of the features in a dataset.

Figure 2: Three concentric layers of a dataset are shown
in (a). A ray is depicted in the dataset and the corre-
sponding ray profile is drawn in (b). Small marks on the
ray profile are shown in (b) which depict the transition
points. On the right we show the first three layers that
will be generated from this dataset as a result of feature
peeling.

3.1 Locating Transition Points

The search for the transition points can be based on the
first and second derivatives of the ray profile. While the
algorithm proceeds along the ray, it monitors the first
and the second derivatives of the ray profile. Local min-
ima, i.e., locations along the ray where the first order
derivative is zero and the second order derivative is pos-
itive are considered as the transition points.

These transition points can vary based on the number
of features along a ray and the amount of noise. Espe-
cially in the case of MRI datasets, there can be a large
number of transition points present because of high fre-
quency noise. We therefore need to remove high fre-
quency noise by using a low pass filter. This will smooth
the profile, removing all the transition points that exist
because of noise and enhancing the transition points that
are representative of the dataset.

Low frequency noise in the MRI datasets may also gen-
erate false transition points. These transition points are
removed by calculating the slope between the transition
point and the local maximum of the peak immediately
following the transition point. If the slope is less than
some user specified threshold, it is discarded and the
search for another transition point is carried on from the

local maximum onward. We call this threshold slope-
threshold henceforth in this paper.
Figure 3 illustrates the usage of the slope-threshold. A
local minimum and a local maximum are depicted as a
circle and a square respectively. The dashed line shows
the slope-threshold specified by the user. A dashed ar-
row depicts the calculated slope. This local minimum
will not be considered a transition point as the slope be-
tween the local minimum and the local maximum is be-
low the slope-threshold.

Figure 3: The grey circle shows the local minimum and
the grey square shows the first local maximum after this
local minimum. The thick dashed line depicts the slope-
threshold. The slope between the local minimum and
the local maximum is shown by a dashed arrow.

Figure 4(a) shows an original ray profile from an MRI
head dataset. High frequency noise is visually recog-
nizable. Transition points for this ray profile are shown
in figure 4(b) as vertical lines, calculated after removing
high frequency noise. Arrows point at the local min-
ima that are the result of low frequency noise and which
are discarded. Figure 4(c) shows a slice from the MRI
dataset with a red line showing the path of the ray whose
profile is in figure 4(a) and 4(b). The slope-threshold
was set to 1.0 (45 degrees) for generating figure 4(b).

3.2 Relevance Across Neighboring Rays

The transition points are generated with no input from
neighboring ray profiles. This may subdivide the vol-
ume data into non-smooth feature layers because of the
difference in depths of the transition points of neigh-
boring rays. Figure 5 shows three neighboring rays and
their first and second transition points. A dashed curve
is drawn by connecting the first transition point of all the
three rays. Similarly, the dotted curve connects the sec-
ond transition point of the rays. The distance from the
start of a ray to the location of the transition point along
the ray is called transition depth. The transition points
have variable transition depth in all the rays shown.



4 3 FEATURE PEELING

Figure 4: Original ray profile of an MRI dataset in (a)
shows a lot of high frequency noise. In (b) the very pro-
file of (a) is filtered with a median low pass filter. Verti-
cal lines depict the transition points and arrows indicate
the local minima skipped based on the slope-threshold.
(c) shows a slice from the MRI dataset and the red line
indicates the path of the ray.

That part of the dataset that lies between its bound-
ary and the dashed curve in figure 5 is called layer 1.
Similarly, data between the dashed curve and the dotted
curve is called layer 2 and so forth. We cannot expect
constant transition depths across neighboring rays as the
main point of feature peeling is to generate images from
the individual irregular feature layers.
In order to accommodate inaccuracies of our de-noising
procedure, we do, however, want to avoid large changes
in the transition depths from one ray to its neighbor.
This is achieved by assigning each transition point an
importance or a relevance value that is based on its sim-
ilarity to corresponding transition points in the neigh-
boring rays. This will help us to interactively control
the level of peeling, i.e. to specify how many layers will
be generated.
We show the calculation of the importance value in two
steps. First we calculate a raw importance value, which

Figure 5: Three rays with position x-1, x and x+1 are
shown. A dashed curve is drawn by connecting the first
transition point of each of the three rays. It shows an
interface between layer 1 and layer 2. A dotted curve
shows an interface between layer 2 and layer 3 and is
drawn by connecting the second transition points of all
the rays.

is an intermediate value. Then we use this raw impor-
tance value to calculate the importance value that always
lies in the range from zero to one. The raw importance
value RI pxy of a transition point is calculated as the ab-
solute difference of the transition depth depthx,y at the
current ray profile x,y and the average of the transition
depths in the 3x3 neighborhood of the ray x,y, where
transition depth lies between zero and the maximum
length of a ray depthmax:

RI pxy =

∣∣∣∣∣depthx,y−
1

∑
i=−1

1

∑
j=−1

depthx+i,y+ j

9

∣∣∣∣∣
where 0≤ depth≤ depthmax

The importance value I pxy of a transition point is then
calculated by subtracting the normalized raw impor-
tance value RI pxy from 1.0:

I pxy = 1.0− [RI pxy/depthmax]

The importance value ranges from zero to one with zero
as the lowest importance and one as the highest impor-
tance for a transition point. The value from the above
calculation encodes the importance of a transition point.
Transition points with a low importance are potential
jumps in a layer and should be discarded. Similarly, the
user can also control the level of peeling (i.e., number
of layers) by means of a user specified threshold, which
we call peeling-threshold. Transition points with impor-
tance less then the peeling-threshold are ignored by the
algorithm.

Listing 1 shows the high level pseudo code for find-
ing transition points using feature peeling. A function,



5

which locates a transition point for a given layer is pre-
sented. We also show the algorithm for producing layers
by opacity peeling in Listing 2. Opacity peeling only
takes visibility into consideration and is therefore insen-
sitive to features. Feature peeling on the other hand pro-
duces layers where each layer corresponds to a feature
inside the dataset.

Listing 1: High level pseudo code for calculating tran-
sition points on a single ray is given. It locates a transi-
tion point for a given layer on the basis of user specified
thresholds.

lowFil() ⇒ filters a location using a user specified low
pass filter
sampV()⇒ returns a scalar value from a 3D volume
calSl()⇒ returns slope between the parameters
calImp()⇒ returns an importance value for a transition
point

LocateTransitionPoint(layer, rayPos)
counter = 0
state = 0
nextVal = lowFil(sampV(rayPos))

while (NotEndofRay)
currentVal = nextVal
nextVal = lowFil(sampV(rayPos + 1))
sl = calSl(currentVal, nextVal)

if ((sl>0)&&(state == 0))
state = 1
LocalMin = rayPos

else if ((sl<0)&&(state == 1))
LocalMax = rayPos
sl = calSl(sampV(localMin),currentVal)
if (sl>slope_Threshold)
IPxy = calImp (localMin)
if (IPxy>peeling_Threshold)
if (counter == layer)
return LocalMin

else
counter++

state = begin
rayPos = rayPos++

Listing 2: The algorithm for generating layers through
opacity peeling is shown. Opacity peeling does not have
a mechanism to position the layers so that features are
not split between layers.

FrontToBackCompositing() ⇒ performs front to back
compositing
accOp⇒ Accumulated Opacity
curOp⇒ Opacity at current ray position
highTh⇒ Higher Threshold
lowTh⇒ Lower Threshold

LocateLayerPostion (layer, rayPos)
accOp = 0
curOp = 0
counter = 0
while ((NotEndofRay)
FrontToBackCompositing()
if ((accOp>highTh)&&(curOp<lowTh))
if (counter == layer)
return accOp

else
counter++
accOp = 0

rayPos = rayPos++

4 Implementation

We implement our system on an AMD Turion, 2.0 GHz
CPU and an NVidia GeForce Go7300 graphics board.
Feature peeling is generic with respect to rendering. The
separate layers can be rendered for example with DVR,
MIP, LMIP. The images that we show in this paper are
generated by using Direct Volume Rendering. We have
used a median low pass filter for de-noising in all of our
test cases.
The result images are computed by controlling just two
sliders. One slider specifies the slope-threshold and the
second slider controls the peeling-threshold. Both of
these thresholds affect the number of layers that will be
generated as a result of the feature peeling algorithm.
Graph 1 shows the number of layers generated from
the MRI head dataset by using various combinations
of these thresholds. The resolution of the head dataset
is 256x256x109.
There is no change in the number of layers produced
by feature peeling when the slope-threshold is zero and
the peeling-threshold is between 0 and 0.96. There



6 5 RESULTS

is a sharp decline in the number of layers produced
through feature peeling when the slope-threshold is set
to the lowest value of zero and the peeling-threshold is
changed from 0.96 to 0.98. On the other hand, there is
not significant change in the number of layers produced
when the slope-threshold is set to a high value of 20 and
the peeling-threshold is changed from 0 to 0.98.

Graph 1: This graph shows the number of layers pro-
duced from an MRI head dataset for different combina-
tions of the peeling-threshold and the slope-threshold.
Dataset resolution is 256x256x109.

This shows that by assigning a low value to the slope-
threshold the number of layers will not vary uniformly
with changing the peeling-threshold. For a high slope-
threshold the number of layers that can be produced by
manipulating the peeling-threshold is limited.

Graph 2 shows the number of layers generated by differ-
ent combinations of the slope-threshold and the peeling-
threshold for the CT hand dataset. Hand dataset has a
resolution of 244x124x257. The variance in the number
of layers with respect to the thresholds is similar as wit-
nessed in graph 1. However, the variance in the number
of layers is less then in graph 1 as there are fewer fea-
tures in the hand dataset.

Graph 2: This graph shows the number of layers pro-
duced from a CT dataset for different combinations of
the peeling-threshold and the slope-threshold. Dataset
resolution is 244x124x257.

We measure the performance of our system using an
MRI head dataset. We also compare our results with
an implementation of opacity peeling. Our image res-
olution is 512x512. Table 1 shows the rendering speed

of feature peeling and opacity peeling for four differ-
ent layers of the head dataset. The slope-threshold was
set to 1.0 (45 degrees) and the peeling-threshold was set
at 0.965. This yields four layers.
The performance decreases with an increasing number
of layers. The frame rate is dependant on the depth of
the transition points and also on the number of local
minima being skipped. Therefore, the rendering time
must increase in order to visualize layers of larger depth.

Table 1: This table shows the performance of our algo-
rithm. Column 2 shows the rendering speed in frames
per second when only the slope-threshold is used to de-
cide if a local minimum will be considered a transition
point. Column 3 shows the rendering speed for differ-
ent layers when both thresholds are calculated. The last
column shows the performance of opacity peeling.

Slope-threshold Slope-threshold Opacity
only and peeling

peeling-threshold
Layer1 8.2fps 7.7fps 7.8fps
Layer2 6.1fps 5.2fps 5.0fps
Layer3 5.6fps 3.8fps 2.0fps
Layer4 5.2fps 3.3fps 1.8fps

5 Results

We show our results by using two MRI datasets (head
angiography and head) and one CT dataset (hand). We
also show the variance in the transition depth across the
layers produced by feature peeling and compare the re-
sults with opacity peeling.
Figure 6 shows an MRI angiography dataset divided into
two layers. Figure 6(a) shows the Direct Volume Ren-
dering of the dataset without feature peeling. A lot of
high frequency noise is present and thus the veins are not
clearly visible. Figure 6(b) shows the first layer of the
MRI dataset, generated through feature peeling. All the
high frequency noise is filtered out and we have a clear
view to the veins. However, two veins of approximately
the same shape are present in the area marked with an
oval. The vein that is covering another vein is removed
in figure 6(c), to reveal the hidden vein by showing the
next layer. Figure 6(d) again shows the first layer ren-
dered through feature peeling after slightly rotating the
dataset. Both the veins can now be seen to have almost
the same shape.
In figures 7(a) to 7(c) and 7(e), we show four layers
of an MRI head dataset. The first layer in figure 7(a)
shows the outer layer, the second layer in figure 7(b)



REFERENCES 7

shows the brain surface, the third layer in figure 7(c)
uncovers the eyeball and reveals part of the ventricles
and the forth layer in figure 7(e) shows the corpus callo-
sum, inner part of the ventricles and the right eye. Fig-
ure 7(d) and 7(f) show the third and forth layers of the
same dataset produced using opacity peeling. Ventricles
and corpus callosum are for example less recognizable
in figure 7(d) and 7(f) compared to figure 7(e).
Figures 8(a) and 8(b) show the second and the third layer
of a hand dataset produced by opacity peeling. Fig-
ure 8(a) shows bones and some parts of the veins. The
third layer in figure 8(b) skips large parts of the veins,
making it difficult to visualize them. Figure 8(c) shows
zoom-in of the region where veins have been skipped.
Figure 8(d) and 8(e) show the second and the third layer
of the hand dataset generated using feature peeling. The
second layer in figure 8(d) peels off the upper bone and
shows some veins and the lower part of the bone. The
third layer in figure 8(e) removes bone to show occluded
veins and arteries. Figure 8(f) is a zoom-in of the third
layer.
Graph 3(a), 3(b) and 3(c) display the standard devia-
tions over the second, third and forth layers of the head
dataset using both feature peeling and opacity peeling.
Feature peeling consistently produces lower variance on
the layer boundaries as compared to opacity peeling.
Opacity peeling is concerned with visibility irrespec-
tive of feature boundaries, while feature peeling sepa-
rates the volume data along smooth feature interfaces.
We have used a slope-threshold of value 1.0 to generate
these graphs.

6 Conclusion and Future Work

This paper introduces feature peeling, a browsing of vol-
umetric data in feature layers for a selected view-point.
Feature peeling successfully works for medical datasets.
It has shown promising results for MRI datasets, which
are hard to visualize using traditional 3D visualization
techniques.
While feature peeling requires the specification of two
thresholds (a slope-threshold as well as a peeling-
threshold), we believe that these thresholds can remain
constant over a large amount of patient studies. How-
ever, this needs further investigation.
Further, a more thorough test needs to be done on the in-
fluence of the de-noising method. Currently we are sim-
ply using a low pass median filter. It is possible that a bi-
lateral filtering in combination with Gaussian smoothing
or similar approaches might improve the coherency of
transition points. It will be interesting to investigate if

we can use feature peeling to dynamically select view
positions. We would like to detect the regions inside the
dataset where data field is changing most rapidly. The
algorithm can then calculate an optimal viewing posi-
tion for these regions and perform feature peeling. This
could provide a separate view for almost every feature
of the dataset.

References

[1] Chandrajit L. Bajaj, Valerio Pascucci, and
Daniel R. Schikore. The contour spectrum. In
IEEE Visualization ’97, pages 167–175, 1997.

[2] Steven Bergner, Torsten Moeller, Mark S. Drew,
and Graham D. Finlayson. Interactive spectral vol-
ume rendering. In IEEE Visualization ’02, pages
101–108, 2002.

[3] Duffy Brian, Denby Brian, and Hamish Carr. On
histograms and isosurface statistics. IEEE Trans-
actions on Visualization and Computer Graphics,
12:1259–1266, 2006.

[4] Markus Hadwiger, Klaus Engel, Christof Rezk-
Salama, Daniel Weiskopf, and Joe M.Kniss. Real-
time Volume Graphics. A. K. Peters, 2006.

[5] Gordon Kindlmann and James W. Durkin. Semi-
automatic generation of transfer functions for di-
rect volume rendering. In IEEE Symposium on
Volume Visualization ’98, pages 79–86, 1998.

[6] Joe Kniss, Gordon Kindlmann, and Charles
Hansen. Interactive volume rendering using multi-
dimensional transfer functions and direct manipu-
lation widgets. In IEEE Visualization ’01, pages
255–262, 2001.

[7] Joe Kniss, Gordon Kindlmann, and Charles
Hansen. Multidimensional transfer functions for
interactive volume rendering. IEEE Transac-
tions on Visualization and Computer Graphics,
8(3):270–285, 2002.

[8] Andreas Koenig, Helwig Loeffelmann, and Meis-
ter Eduard Groeller. Transfer function specifica-
tion for the visualization of medical data. Tech-
nical Report, Vienna University of Technology,
March 1998.

[9] GA. Laub and WA. Kaiser. Mr angiography with
gradient motion refocusing. Journal of Computer
Assisted Tomography, 12(3):377–382, 1988.



8 REFERENCES

[10] Tom Malzbender. Fourier volume rendering. ACM
Transactions on Graphics, 12:233–250, 1993.

[11] S. Naple, M.P. Marks, R.D. Rubin, R.B. Jeffrey,
M.D Dake, D.R. Enzmann, and McDonnell. Ct
angiography using spiral ct and maximum inten-
sity projections. In Radiology ’92, pages 607–610,
1992.

[12] Vladimir Pekar, Rafael Wiemker, and Daniel
Hempel. Fast detection of meaningful isosurfaces
for volume data visualization. In IEEE Visualiza-
tion ’01, pages 223–230, 2001.

[13] Simeon Potts and Torsten Moeller. Transfer func-
tion on a logarithmic scale for volume rendering.
In Graphics Interface ’04, pages 57–63, 2004.

[14] Christof Rezk-Salama and Andreas Kolb. Opac-
ity peeling for direct volume rendering. Computer
Graphics Forum, 25:596–606, 2006.

[15] S. Rossnick, D. Kennedy, G. Laub, G. Braeckle,
R. Bachus, D. Kennedy, A. Nelson, S. Dzik, and
P Starewicz. Three dimensional display of blood
vessels in mri. In IEEE Computers in Cardiology
’86, pages 183–196, 1986.

[16] Yoshinobu Sato, Nobuyuki Shiraga, Shin Naka-
jima, Shinichi Tamura, and Ron Kikinis. Local
maximum intensity projection (lmip): A new ren-
dering method for vascular visualization. Jour-
nal of Computer Assisted Tomography, 22(6):912–
917, 1998.

(a)

(c)

(b)

(d)

Figure 6: Direct Volume Rendering of an MRI dataset is
shown in (a). The first layer of the dataset is given in (b).
Two veins with approximately the same shape exist in
the region marked with an oval. The vein that occludes
the other one is peeled away in layer 2 (c) to show the
hidden vein. Both the veins are visible in (d), which
is the first layer of the same dataset rendered through
feature peeling after slightly rotating the dataset.



REFERENCES 9

(a) layer 2

(b) layer 3

(c) layer 4

Graph 3: The variance in the transition depth of a layer
for feature peeling as well as for opacity peeling is
shown for three layers. (a) shows variation of depth in
the second layer of the MRI head dataset. (b) and (c)
show results for the second and the third layers respec-
tively. Legend includes ranges of standard deviations in
which the transition points were categorized.



10 REFERENCES

(a)

(f)(e)(d)

(c)(b)

Figure 7: (a), (b), (c) and (e) show the first, the second, the third and the forth layer generated using feature peeling.
The third and the forth layer obtained using opacity peeling are shown in (d) and (f). (e) shows ventricles and the
right eye as well as a clearly distinguishable corpus callosum. These features are not clearly visible neither in (d)
nor in (f). Slope-threshold is 1.0 and peeling-threshold is 0.965.

Figure 8: (a) and (b) show the second and the third layer of the hand dataset rendered using opacity peeling. (d)
and (e) show the second and the third layer obtained using feature peeling. The veins in (e) are better visible
through feature peeling. (c) and (f) show zoom-ins for (b) and (e) respectively. First layer of the hand dataset is
not shown as it is not relevant here. Slope-threshold is 1.0 and the peeling-threshold is 0.97.


